Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(8)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38132517

ABSTRACT

Propolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.

2.
Beilstein J Nanotechnol ; 13: 958-974, 2022.
Article in English | MEDLINE | ID: mdl-36161253

ABSTRACT

In a biomimetic top-down process, challenging the problem of resin deposition on woodworking machine tools, an adequate biological model was sought, which hypothetically could have developed evolutionary anti-adhesive strategies. The honeybee (Apis mellifera) was identified as an analogue model since it collects and processes propolis, which largely consists of collected tree resin. Propolis is a sticky substance used by bees to seal their hive and protect the colony against pathogens. In spite of its stickiness, honeybees are able to handle and manipulate propolis with their mandibles. We wanted to know if beneficial anti-adhesive properties of bee mandibles reduce propolis adhesion. The anatomy of bee mandibles was studied in a (cryo-)scanning electron microscope. Adhesion experiments were performed with propolis on bee mandibles to find out if bee mandibles have anti-adhesive properties that enable bees to handle the sticky material. A scale-like pattern was found on the inside of the mandible. Fresh mandibles were covered with a seemingly fluid substance that was at least partially removed during the washing process. Propolis adhesion on bee mandibles was measured to be 1 J/m2 and was indeed significantly lower compared to five technical materials. Propolis adhesion was higher on mandibles that were washed compared to fresh, unwashed mandibles. Results indicate that the medial surface of the mandible is covered with a fluid substance that reduces propolis adhesion. First results suggested that the surface pattern does do not have a direct effect on propolis adhesion.

SELECTION OF CITATIONS
SEARCH DETAIL
...